DMC 2001, Las Vegas, NV November 26-29, 2001

Performance Enhancement For Ship Repair/Conversion Processes

Roger Bostelman,

Project Manager

Dave Stieren,

NIST Project Manager

Vincent Villette,

Guest Researcher

Manufacturing Engineering Laboratory
National Institute of Standards and Technology
Technology Administration
Department of Commerce

Presentation Outline

- Organization: NIST, MEL, ISD
- NSRP ASE Joint Project
- Performance Enhancement: Flying Carpet
- Next Steps

NOTE: NIST does not endorse products. Products are used for illustration purposes only and are not mentioned because they are better than another similar product.

Fire Safety

Robotics And**Automation**

Antenna Design

- 100 years old this year, was National Bureau of Standards
 - ... to end confusion in the marketplace and improve products that were unreliable or poorly made.
 - e.g., In 1901, 8 different standards for the gallon
 - since 1949, kept time for nation with cesium-based clock accurate to one second over nearly 20 million years.
 - Nobel Prizes in Physics: Bill Phillips in '97; Eric A. Cornell in '01

...working with industry to develop and apply technology, measurements and standards

Manufacturing Engineering Laboratory

- To satisfy the measurements and standards needs of ... manufacturers ... by conducting R&D, providing services, and participating in standards activities.
- Over 400 professionals, support staff and guest researchers.

Intelligent Systems Division

• To develop the measurements and standards infrastructure needed for the application of intelligent systems by manufacturing industries and Government.

ISD Programs

• Research and Engineering of Intelligent Control Systems

Enhanced Machine Control

Knowledge Engineering

Reference Model Architecture for Manufacturing

• Intelligent Open Architecture Control of Manufacturing

Systems

Hexapod NGIS

RoboCrane Welding

- Intelligent Control of Mobility Systems
 - Military: Demo III Project (Army)
 - Transportation: Department of Transportation Project
 - Manufacturing: Industrial Autonomous Vehicles Project

"Knowledge Based Modular Repair Project"

- Within: "NSRP's flagship R&D program, Advanced Shipbuilding Enterprise, is focused on improving the commercial competitiveness of the U.S. shipbuilding industry, thereby reducing the cost of Navy ships." (www.nsrp.org)
- Team: Atlantic Marine H.C. and NIST Aug. 99 to May 02
- <u>Goal:</u> To identify, develop, and deploy reverse engineering techniques, controlled manufacturing processes, and knowledge-based models <u>to improve the ship repair and conversion process</u>. *Expected benefits:* Reduced time, cost, and rework.

Problem

- Ship bow and stern are difficult and inefficient to access with conventional stick-built scaffold methods.
- Ship upper sides can also be difficult.
- *Example*: Observed more than 1 shift (8 hrs.) x 8 people to assemble single, fixed 80 foot tower to ship bow on dry dock = *64 person-hours total*.
- *Solution*: "Flying Carpet" takes an estimated 1 hour x 3 people to set-up = *3 person-hours total*.
 - PLUS: Flying Carpet provides <u>maneuverability of</u> <u>people and heavy loads</u> (steel plate, equipment, ...) with simple joystick control.

Combining Technology: Flying Carpet Basis

NIST RoboCrane Technology

Constrained platform motion from rigging

Ref: NIST Tech. Note 1267

... including,

RoboCrane
platform control
Precision joystick
and programmed
control
demonstrated

Combined with...

Commercial Scaffold

Scaffolding Corp.

Solution: NIST Flying Carpet

Ship side access configuration

Towers

Dry Dock Side Rail

Ship

Cables

Suspended Platform

Ship bow/stern access configuration

Flying Carpet Expected Features

- Joystick controlled
- 50' x 2' modular platform
- 6 ton max. payload
- 70 feet or more working height (tower ht. depend.)
- ±15° Yaw (bow/stern)
- Dry Dock mount allows some pre-set-up and reconfigurability
- Platform weight: 3 tons
- Stable in 6 DOF

Flying Carpet Set-up Sequence

1. Flying Carpet is craned or wheeled to dry-dock; Cables are handed to workers at dry-dock sides.

Note: Some pre-set-up (i.e., tower installation) can occur prior to ship arrival!

2. Two 40' tall towers are installed on drydock sides; Cables are attached to two towers and two dock hard points.

3. Cables are tightened using controller; Flying Carpet is ready to use with simple joystick control.

Ship Bow/Stern Access

Workers installing and finishing a heavy steel plate with joystick-controlled Flying Carpet

Clearance beneath Flying Carpet for platform maneuverability and/or simultaneous work below platform

Flying Carpet Stern Access

Flying Carpet Scale Models

• 1/120th scale (table-top) – static model built - for feasibility, rigging, and overall concept study

 1/40th scale moveable model built - for platform work volume limits and rigging study

• Full scale testbed (50' x 5') — built - for static measurement and computer model verification

Computer Modeling

Ship Side Access: dry dock-supported

- Cross-cables (atypical) allow stiffer system sideto-side
- Joystick control automatically pays cables in and out
- Angled cables and/or electro-magnets can provide continuous, front platform-edge, ship-touch.

- Dry-dock-supported system allows pre-set-up prior to ship arrival
- Flexibility of attachment (to dry dock or ship) and ship access points
- Minimal ship-touch to allow side plate installation and/or finish work
- Modular Flying Carpet allows reuse/reconfiguration of system components

Ship Side-Access

with conventional suspended scaffold

Advanced Ship Side-Access

•Vertical <u>and</u> horizontal platform travel with NIST controller.

•More rigid platform constraint.

end view

front view

Phase 2 Flying Carpet Scale Models

• 1/12th scale moveable model built - for feasibility and rigging concept study of ship side access configuration

• Full Scale Phase 2 testbed - - for control study of both ship bow/stern and side access configurations (May 02 deliverable)

Phase 2 Flying Carpet Spec's

Two Configurations:

Ship side access

- 6 support cables, two-part lines
- hoist-controlled cable lengths (1500 lb. working-load hoists x 2 part line for 3000 lb. total hoist capacity)
- two support towers mounted to wing walls
- manually controlled rollers on wheels push off wing wall/supports

Ship bow/stern access

- 6 support cables, two-part lines
- hoist-controlled cable lengths (1500 lb. working-load hoists x 2 part line for 3000 lb. total hoist capacity)
- two support towers mounted to wing walls (4 cables attached,
 2 per tower using snatch blocks)
- two cable attachment points on wing walls (one on each wall using snatch blocks)

Phase 2 Testbed Mechanical Design

Phase 2 Design

Phase 2 Flying Carpet Spec's

Platform Weight Estimate:

- scaffold: 755 lb. (4ea. 9.75 ft, 1 ea. 6 ft sections) - bolts to top of truss triangle

- truss: 1163 lb. (2 ea. 18K9's at 24 ft = 10.2 lb. x 48 ft = 490 lb.

 $+ 2 @ 33 \text{ ft} = 10.2 \times 66 \text{ ft} = 673 \text{ lb.})$

- corners: 330 lb. (3 ea. x 110 lb.)
- hoists: 500 lb. (6 ea. x 80 lb.)

- pulley blocks: 240 lb. (40 lb. x 6 ea.)

Total Weight: 2988 lb. (1.5 t)

Platform Size: 48' wide x 24' (5' for side access) deep x 5' high

Platform Payload: 750 lb. {limited to scaffold payload}

(2 tons avg., 6 tons max. desired max. payloads)

Scaffold: OSHA approved

Vertical Load Safety Factor: 4.8 (with 6 hoists), 2.4 (with 3 hoists) - 750 lb. payload

Controls: 4-axis Joystick operator interface, 2 tilt angle (roll/pitch) constrained & redundant (sensor, kinematics), PC104 w/Linux OS, CAN- or serial-controlled servo

Designs build on conventional equipment

Controls

- Same controller as Air Force Platform project
- •PC 104 embedded computer,Linux OS, kinematics
- Desktop,laptop for develop./tblsht only
- Sensors: hoist-motor encoders, angle, load cells
- Operator input via joystick

Next Steps

- Build Phase 2 testbed at NIST
 - <u>Initial goal</u>: to measure the static and dynamic constraint of a large-scale platform suspended from 4 points useful for worker- and/or material-access to large structures (ships, aircraft, buildings, towers).
 - Second goal: to study the platform controllability using atypical RoboCrane kinematics.
- Demonstrate to invited shipyards, Navy, and other industries in June 2001.
- Transfer technology through cooperative agreements, licenses, etc. with industry manufacturer/maintainer for supply to shipyards.

For More Information Contact:

Roger Bostelman

Flying Carpet Project Manager

National Institute of Standards and Technology

Building 220, Room B124, MS8230

Gaithersburg, MD 20899

Phone: 301-975-3426, Fax: 301-921-6165

Email: roger.bostelman@nist.gov

http://www.isd.mel.nist.gov/projects/robocrane/shipbuilding.html

